Вторник, 24.06.2025, 01:35 | Приветствую Вас Гость | Подписка на новости сайта
Меню сайта

Темы
Чупакабра [788]
Снежный человек [1122]
Морские чудовища [1052]
Сухопутные твари [920]
Летающие монстры [250]
Подземные твари [61]
Динозавры,мегафауна [1577]
Теория [1245]
Акулы [268]
Бабочки [161]
Грибы [221]
Гусеницы [63]
Дельфины [176]
Ежи [37]
Жуки [115]
Зайцы [33]
Змеи [259]
Кальмары,осьминоги [196]
Киты [291]
Копытные [587]
Кораллы [159]
Кошачьи [816]
Крокодилы [114]
Крысы,мыши [366]
Летучие мыши [171]
Лягушки [207]
Медведи [346]
Медузы,моллюски [225]
Микроорганизмы [631]
Морские звезды [40]
Морские львы,тюлени [152]
Муравьи [254]
Мухи,комары [291]
Насекомые [407]
Обезьяны [692]
Пауки [332]
Пингвины [97]
Псовые [660]
Птицы [1166]
Пчелы [362]
Ракообразные [203]
Растения [639]
Рыбы [911]
Саранча,кузнечики [29]
Слоны [157]
Сурикаты,грызуны [316]
Тараканы [59]
Улитки [77]
Хамелеоны [18]
Черви [218]
Черепахи [131]
Ящерицы [193]

Интересное
Аномальные новости

Хроники природных катастроф

Календарь
«  Октябрь 2024  »
Пн Вт Ср Чт Пт Сб Вс
 123456
78910111213
14151617181920
21222324252627
28293031

Архив новостей

Реклама

Логотип сайта

Форма входа

Главная » 2024 » Октябрь » 12 » Узор крыльев стрекозы оказался прочнее архитектурных решений Древнего Рима

14:33
Узор крыльев стрекозы оказался прочнее архитектурных решений Древнего Рима

Исследователи из Сколтеха и их коллега из Гранадского университета (Испания) определили, какие способы укрепления куполов и сводов архитектурных построек справляются с задачей лучше других. Ученые сравнили, насколько хорошо выдерживают нагрузку конструкции с разными вариантами расположения ребер жесткости.

Проверка проводилась в форме натурных и вычислительных экспериментов, в которых укрепленную конструкцию нагружали сначала равномерно, потом асимметрично. На основании полученных результатов, исследователи предложили свою собственную схему расположения ребер жесткости, вдохновленную крыльями стрекоз, которая оказалась прочнее всех рассмотренных в работе традиционных и новаторских решений.

Исследование опубликовано в журнале Thin-Walled Structures. Ребра жесткости используются для укрепления сводов и куполов с античности. Они делают возможными более тонкие конструкции, выбор которых бывает продиктован как эстетическими, так и инженерными соображениями — это экономия материала, широкие пролеты без промежуточных опор, изящная геометрия конструкции и большие окна, как в готических соборах. Ребра жесткости можно увидеть не только в исторических постройках, но и на станциях метро, промышленных объектах.

Однако, если говорить о выборе самой схемы расположения ребер, обычно предпочтение отдается проверенной временем классике. Это кессонные потолки — квадратная сетка, как в римском Пантеоне. Или так называемые крестовые своды — как в традиционных православных храмах крестово-купольного типа и вдохновивших их византийских прообразах. Никакого сложного анализа для поиска более совершенных решений обычно не проводится.

«Мы решили проанализировать несколько вариантов расположения ребер и узнать, какие из них лучше противостоят вертикальной, а также асимметричной нагрузке, — рассказывает первый автор исследования, аспирант программы „Математика и механика“ Анастасия Москалева. — Для этого мы провели численное моделирование и физические эксперименты на изогнутых полимерных композитных оболочках, спроектированных в прошлогоднем исследовании. Их снабдили ребрами жесткости, расположенными пятью разными способами, при этом во всех случаях на ребра выделялось в два раза меньше материала, чем на саму оболочку».

Оболочки, с которыми работали исследователи, спроектированы ранее с применением метода оптимизации, называемого поиском форм: к конечной форме конструкции приходят логически через процесс, вдохновленный природой. Эксперименты в таком духе когда-то проводил Антонио Гауди: он наблюдал, как подвешенные модели деформируются под собственным весом, и использовал деформированные в обратную сторону формы в архитектуре. По сути, он добивался решения от самой гравитации, поэтому о таком подходе говорят, что «форма продиктована силой».

Изначально исследователи проанализировали пять схем расположения ребер, в числе которых две проверенные временем — кессонные потолки и крестовые своды — и две полученные алгоритмами топологической оптимизации (средняя колонка на иллюстрации). Один из этих «неклассических» вариантов получен оптимизацией толщины оболочки в каждой точке, то есть перераспределением материала туда, где он больше всего нужен. Другой образован так: две одинаковые оболочки помещаются одна на другую, и ребра создаются путем оптимизации нижней половины этой двойной структуры. Наконец, пятый, бионический дизайн получен подражанием панцирю черепахи, крыльям стрекозы и другим природным объектам, похожим по структуре на известную из геометрии «мозаику Вороного».

И натурные, и вычислительные эксперименты показали превосходство топологически оптимизированных решений над традиционными и мозаикой Вороного с точки зрения сопротивления вертикальной нагрузке. Но при рассмотрении случая асимметричной нагрузки, как если снег скопится на одной стороне крыши или большое количество людей будут переходить с места на место единой группой, расстановка сил в корне изменилась. Победителем оказался крестовый свод, на втором месте — топологическая оптимизация единым куском. Важная деталь: хотя кессонный потолок и мозаика Вороного здесь не показали превосходного результата, именно эти схемы расположения ребер меньше всего потеряли очков при переходе от симметричной к асимметричной нагрузке.

«Это подтолкнуло нас „скрестить“ мозаику Вороного с наиболее успешным вариантом топологической оптимизации из эксперимента с вертикальной нагрузкой в надежде взять лучшее и оттуда и оттуда, — поделилась Москалева. — Мы внимательно изучили структуру крыла стрекозы, которая напоминает, но не полностью повторяет мозаику Вороного. Оказалось, что ребра жесткости в крыле можно поделить на два типа: наиболее жесткие сопротивляются изгибающей нагрузке, а более тонкие обеспечивают общую структурную стабильность крыла. И мы решили, что сможем добиться того же в случае архитектурного свода».

Чтобы сгенерировать шестой, гибридный вариант расположения ребер, ученые сначала повторили топологическую оптимизацию всей оболочки целиком. Только на формирование этих «первичных ребер» израсходовали не весь доступный материал, а 70 процентов. Оставшиеся 30 процентов распределили параметрическим алгоритмом в соответствии с мозаикой Вороного.

Решение сработало так хорошо, что гибридная схема расположения ребер превзошла все остальные пять вариантов как в случае центральной осевой, так и в случае асимметричной нагрузки.

«В результате мы видим, что у топологической оптимизации есть большой потенциал в строительном проектировании. Но эти методы скорее используются в проектировании механических систем в автомобилестроении и самолетостроении, а в строительной инженерии — нет, — добавляет Москалева. — Да, оптимизированные формы сложны и на первых порах вызывают трудности в изготовлении. Зато если один раз оптимизировать составные части стандартного сооружения, такого как многоуровневая парковка, и поставить на поток их производство, в конечном итоге такое вложение окупится за счет экономии материала. Вдобавок к этому будет меньше рамок, ограничивающих архитекторов».

https://naked-science.ru/article/column/uzor-krylev-strekozy-okaz

Категория: Насекомые | Просмотров: 159 | Добавил: Sergo | Рейтинг: 0.0/0


Последние новости

Тайна сербского Лох-Несского чудовища (28)

Сняли детеныша Лох-Несского чудовища (19)

Если йети существуют, почему они до сих пор не обнаружены (18)

Позднемелового родственника ядозубов назвали в честь предводителя орков (11)

Записали звуки и передвижение таракана при помощи оптоволокна (15)

Формула идеального взмаха поможет создать роботов-птиц будущего (11)

Биофлуоресценция у рыб развивалась более 100 раз за 112 млн лет (38)

Биологи надели 3D-очки на богомолов и сделали из них буридановых ослов (22)

Насекомые способны к навигации по звездам (24)

Растения, которые не стоит собирать и выращивать (25)

Кожная слизь аксолотля распознала и уничтожила раковые клетки (21)

Нашли нового предка тираннозавра (18)

Новый вид ящерицы-монстерзавра назвали в честь вождя гоблинов (44)

Паук-кружевник убил добычу, окутав токсичным шелком (23)

В кожном секрете ослов нашли средство от клещей (26)

В Канадской Арктике нашли челюсти новой хищной рыбы девонского периода (45)

Почему птицы поют на рассвете (25)

Роевой интеллект направил муравьев расчистить путь перед сородичами с добычей (20)

Ветеринары выявили породы собак, чаще подверженные диарее (27)

Палеонтологи впервые описали кололит зауропода (19)

Бигфута сняли в лесах Колорадо (110)

Открыли гриб с производными ЛСД (39)

Байкальские рачки сохранили древнюю способность выживать при нагреве (39)

Шимпанзе заразились зевотой от робота (38)

Отыскали новую популяцию вымирающих беличьих кускусов (35)

У осьминога впервые нашли девятую работающую «ногу» (80)

Как черви совершают коллективный побег в дикой природе (52)

Новый вид рыб в «спасательном круге» нашли в китайских пещерах (44)

Почему павианы «ходят строем» (44)

Макаки с острова Авадзи увлеклись групповым грумингом (38)

Потепление не смогло заменить диатомовые водоросли динофлагеллятами (24)

Какаду научились пользоваться общественными фонтанчиками для питья (34)

Поиски Лох-Несского чудовища продолжаются (66)

Лох-Несское чудовище питается лососем (43)

Постельных клопов назвали первыми насекомыми-вредителями (27)

Как мухи ощущали приложенную лапками силу (26)

Дрозофил заставили полюбить кокаин с помощью генной инженерии (24)

Тетерки охотнее спарились с самцами-танцорами, а не драчунами (33)

У кошек нашли «ген мурлыканья» (29)

Как тюлени ориентируются в мутной воде прибрежных зон (29)

Азиатские слонихи обошли саванных почти на килограмм мозга (28)

Птицы начали гнездиться в Арктике уже в позднем мелу (75)

Данио рерио адаптировались к жаре (25)

Физики напугали сомов (34)

Рыбы-клоуны уменьшились в ответ на тепловой стресс (25)

Опровергли теорию о вымирании мегалодонов (69)

Умственные способности ворон и сорок шокировали (47)

Хиолитов отнесли к самым ранним моллюскам (30)

Насекомые выпутались из паутины благодаря воску на экзоскелете (26)

Ленивцы три раза независимо стали гигантскими (33)

Поиск


Популярное

Дикие люди Китая (34912)

Чупакабра напала на жителя Одесской области (23599)

Растения, питающиеся животными, издавна вселяли в сердца людей страх (23420)

Русские монстры: от древности до наших дней (21541)

Поведение хищников опровергает правила естественного отбора (17464)

Атлантическая треска может исчезнуть из-за роста кислотности океана (17082)

Морского червя приняли за инопланетянина (16044)

Загадочный Каспий. Морские монстры, НЛО, русалки (16024)

Откуда вынырнули русалки? (15654)

На дне Марианской впадины обитают чудовища (15596)

В произведениях Говарда Лавкрафта действуют чудовища, живущие под землей (15315)

Славянская мифология. Сказочные существа. Часть 3 (15238)

В Марианской впадине нашли загадочных существ и инопланетных гостей (14747)

Неведомое существо обитает в Приморье (14706)

Логово снежного человека обнаружено в США (14111)

В Риме гигантские сомы-мутанты пожирают птиц и крыс (13938)

Чупакабра добралась до Воронежской области (12705)

10 неожиданно опасных пород собак (12516)

Монстры океанов (12497)

Ровенский селянин поймал двух упитанных «чупакабр» (12449)

Крылья бабочки помогут создать антибликовое покрытие экранов (12036)

Кракен - чудовище из морской бездны (11939)

Морской змей в Черном море (11917)

Похороны настоящей… русалки (11691)

Распутывая ДНК бигфута (11538)

Обнаружено самое уродливое существо на планете (11420)

В китайской гробнице нашли вымершее существо (11372)

Страшное насекомое замечено в Индии (11310)

Сказки - старшилки про Бабу-Ягу, Кощея Бессмертного и Змея Горыныча (11309)

Рыба-мутант: что можно найти в водах Севана (11266)

Когда просыпаются русалки (11252)

Крысы умнее, чем Google (11237)

Львы дружески трутся друг о друга (11185)

Экологи просят защитить карадагское чудовище (11086)

Мертвого загадочного зверя из США опознали (10971)

Грибы-монстры - пришельцы из космоса (10970)

Кого боятся белые акулы (10901)

Монстры уходят на глубину (10881)

Хайгейтские вампиры (10602)

Морские дьяволы (10522)

Проект "Криптозоология" © 2010-2025 При использовании материалов с сайта активная ссылка на него обязательна

Яндекс.Метрика